On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Number problems at primary level to work on with others.

Number problems at primary level that may require resilience.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

One quarter of these coins are heads but when I turn over two coins, one third are heads. How many coins are there?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

56 406 is the product of two consecutive numbers. What are these two numbers?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Can you find different ways of creating paths using these paving slabs?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

Given the products of adjacent cells, can you complete this Sudoku?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

How many different sets of numbers with at least four members can you find in the numbers in this box?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Can you make square numbers by adding two prime numbers together?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.