48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Number problems at primary level that may require determination.

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

An investigation that gives you the opportunity to make and justify predictions.

Can you make square numbers by adding two prime numbers together?

Got It game for an adult and child. How can you play so that you know you will always win?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

56 406 is the product of two consecutive numbers. What are these two numbers?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Number problems at primary level to work on with others.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

How many different sets of numbers with at least four members can you find in the numbers in this box?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Given the products of adjacent cells, can you complete this Sudoku?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?