Factors and Multiples game for an adult and child. How can you make sure you win this game?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Given the products of adjacent cells, can you complete this Sudoku?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

If you have only four weights, where could you place them in order to balance this equaliser?

Play this game and see if you can figure out the computer's chosen number.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Got It game for an adult and child. How can you play so that you know you will always win?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Can you explain the strategy for winning this game with any target?

A game in which players take it in turns to choose a number. Can you block your opponent?

Using your knowledge of the properties of numbers, can you fill all the squares on the board?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you complete this jigsaw of the multiplication square?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

An environment which simulates working with Cuisenaire rods.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Can you work out some different ways to balance this equation?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?