Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Can you find the chosen number from the grid using the clues?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

56 406 is the product of two consecutive numbers. What are these two numbers?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Can you complete this jigsaw of the multiplication square?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Can you find any perfect numbers? Read this article to find out more...

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

If you have only four weights, where could you place them in order to balance this equaliser?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

Got It game for an adult and child. How can you play so that you know you will always win?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

This package will help introduce children to, and encourage a deep exploration of, multiples.

An investigation that gives you the opportunity to make and justify predictions.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

How many different sets of numbers with at least four members can you find in the numbers in this box?

Can you make square numbers by adding two prime numbers together?