Can you find any perfect numbers? Read this article to find out more...

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

A game that tests your understanding of remainders.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Number problems at primary level that may require resilience.

Use the interactivity to sort these numbers into sets. Can you give each set a name?

If you have only four weights, where could you place them in order to balance this equaliser?

Number problems at primary level to work on with others.

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

An investigation that gives you the opportunity to make and justify predictions.

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Have a go at balancing this equation. Can you find different ways of doing it?

Can you find any two-digit numbers that satisfy all of these statements?

Are these statements always true, sometimes true or never true?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Got It game for an adult and child. How can you play so that you know you will always win?

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?