Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

Use the interactivity to sort these numbers into sets. Can you give each set a name?

Can you complete this jigsaw of the multiplication square?

Can you find the chosen number from the grid using the clues?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Arrange any number of counters from these 18 on the grid to make a rectangle. What numbers of counters make rectangles? How many different rectangles can you make with each number of counters?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Got It game for an adult and child. How can you play so that you know you will always win?

Can you help the children in Mrs Trimmer's class make different shapes out of a loop of string?

An environment which simulates working with Cuisenaire rods.

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?