Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

If you have only four weights, where could you place them in order to balance this equaliser?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Use the interactivity to sort these numbers into sets. Can you give each set a name?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you find the chosen number from the grid using the clues?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

56 406 is the product of two consecutive numbers. What are these two numbers?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Have a go at balancing this equation. Can you find different ways of doing it?

Got It game for an adult and child. How can you play so that you know you will always win?

Arrange any number of counters from these 18 on the grid to make a rectangle. What numbers of counters make rectangles? How many different rectangles can you make with each number of counters?