Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Can you make square numbers by adding two prime numbers together?

How many different sets of numbers with at least four members can you find in the numbers in this box?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Number problems at primary level to work on with others.

Got It game for an adult and child. How can you play so that you know you will always win?

Number problems at primary level that may require determination.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

56 406 is the product of two consecutive numbers. What are these two numbers?

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

This package will help introduce children to, and encourage a deep exploration of, multiples.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you complete this jigsaw of the multiplication square?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Can you work out some different ways to balance this equation?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

An investigation that gives you the opportunity to make and justify predictions.

Have a go at balancing this equation. Can you find different ways of doing it?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

An environment which simulates working with Cuisenaire rods.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?