Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Number problems at primary level to work on with others.

Number problems at primary level that may require resilience.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Can you find different ways of creating paths using these paving slabs?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Can you help the children in Mrs Trimmer's class make different shapes out of a loop of string?

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

If you have only four weights, where could you place them in order to balance this equaliser?

How many trains can you make which are the same length as Matt's, using rods that are identical?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you find the chosen number from the grid using the clues?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Can you make square numbers by adding two prime numbers together?

How many different sets of numbers with at least four members can you find in the numbers in this box?