Arrange any number of counters from these 18 on the grid to make a rectangle. What numbers of counters make rectangles? How many different rectangles can you make with each number of counters?

Can you complete this jigsaw of the multiplication square?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Use the interactivity to sort these numbers into sets. Can you give each set a name?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

If you have only four weights, where could you place them in order to balance this equaliser?

If you count from 1 to 20 and clap more loudly on the numbers in the two times table, as well as saying those numbers loudly, which numbers will be loud?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

An environment which simulates working with Cuisenaire rods.

How many trains can you make which are the same length as Matt's, using rods that are identical?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

A game in which players take it in turns to choose a number. Can you block your opponent?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Play this game and see if you can figure out the computer's chosen number.

An investigation that gives you the opportunity to make and justify predictions.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you find the chosen number from the grid using the clues?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you make square numbers by adding two prime numbers together?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Got It game for an adult and child. How can you play so that you know you will always win?

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.