Arrange any number of counters from these 18 on the grid to make a rectangle. What numbers of counters make rectangles? How many different rectangles can you make with each number of counters?

Can you help the children in Mrs Trimmer's class make different shapes out of a loop of string?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you complete this jigsaw of the multiplication square?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

How will you work out which numbers have been used to create this multiplication square?

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

Can you find the chosen number from the grid using the clues?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

Can you sort numbers into sets? Can you give each set a name?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Play this game and see if you can figure out the computer's chosen number.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

If you count from 1 to 20 and clap more loudly on the numbers in the two times table, as well as saying those numbers loudly, which numbers will be loud?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

An environment which simulates working with Cuisenaire rods.

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?