Number problems at primary level that may require resilience.

How will you work out which numbers have been used to create this multiplication square?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

Number problems at primary level to work on with others.

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Can you make square numbers by adding two prime numbers together?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you find different ways of creating paths using these paving slabs?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

Can you sort numbers into sets? Can you give each set a name?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

One quarter of these coins are heads but when I turn over two coins, one third are heads. How many coins are there?

56 406 is the product of two consecutive numbers. What are these two numbers?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?