Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

Got It game for an adult and child. How can you play so that you know you will always win?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

If you have only four weights, where could you place them in order to balance this equaliser?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Can you help the children in Mrs Trimmer's class make different shapes out of a loop of string?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Can you make square numbers by adding two prime numbers together?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

56 406 is the product of two consecutive numbers. What are these two numbers?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Number problems at primary level that may require resilience.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Number problems at primary level to work on with others.

Use the interactivity to sort these numbers into sets. Can you give each set a name?