Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

56 406 is the product of two consecutive numbers. What are these two numbers?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Got It game for an adult and child. How can you play so that you know you will always win?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Number problems at primary level to work on with others.

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Number problems at primary level that may require resilience.

A game that tests your understanding of remainders.

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.