On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Number problems at primary level to work on with others.

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

How will you work out which numbers have been used to create this multiplication square?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Number problems at primary level that may require resilience.

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Can you make square numbers by adding two prime numbers together?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you find different ways of creating paths using these paving slabs?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

If you have only four weights, where could you place them in order to balance this equaliser?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Can you sort numbers into sets? Can you give each set a name?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Can you find the chosen number from the grid using the clues?

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

Can you help the children in Mrs Trimmer's class make different shapes out of a loop of string?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

56 406 is the product of two consecutive numbers. What are these two numbers?