Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

A pair of Sudoku puzzles that together lead to a complete solution.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A Sudoku that uses transformations as supporting clues.

A Sudoku based on clues that give the differences between adjacent cells.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Use the differences to find the solution to this Sudoku.

Four small numbers give the clue to the contents of the four surrounding cells.

Two sudokus in one. Challenge yourself to make the necessary connections.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

This Sudoku, based on differences. Using the one clue number can you find the solution?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Two sudokus in one. Challenge yourself to make the necessary connections.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

This Sudoku requires you to do some working backwards before working forwards.

You need to find the values of the stars before you can apply normal Sudoku rules.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Solve the equations to identify the clue numbers in this Sudoku problem.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?