This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Solve the equations to identify the clue numbers in this Sudoku problem.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

A Sudoku that uses transformations as supporting clues.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Use the clues about the shaded areas to help solve this sudoku

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

A pair of Sudoku puzzles that together lead to a complete solution.

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Two sudokus in one. Challenge yourself to make the necessary connections.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Two sudokus in one. Challenge yourself to make the necessary connections.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Find out about Magic Squares in this article written for students. Why are they magic?!

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Four small numbers give the clue to the contents of the four surrounding cells.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.