Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Two sudokus in one. Challenge yourself to make the necessary connections.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

A few extra challenges set by some young NRICH members.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Two sudokus in one. Challenge yourself to make the necessary connections.

A Sudoku that uses transformations as supporting clues.

Given the products of diagonally opposite cells - can you complete this Sudoku?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

A Sudoku with clues given as sums of entries.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.