Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Two sudokus in one. Challenge yourself to make the necessary connections.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

A Sudoku based on clues that give the differences between adjacent cells.

Two sudokus in one. Challenge yourself to make the necessary connections.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

A few extra challenges set by some young NRICH members.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

You need to find the values of the stars before you can apply normal Sudoku rules.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

A Sudoku that uses transformations as supporting clues.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A Sudoku with clues given as sums of entries.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Four small numbers give the clue to the contents of the four surrounding cells.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?