Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

A Sudoku based on clues that give the differences between adjacent cells.

Find out about Magic Squares in this article written for students. Why are they magic?!

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

A few extra challenges set by some young NRICH members.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

How many different symmetrical shapes can you make by shading triangles or squares?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Two sudokus in one. Challenge yourself to make the necessary connections.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

You need to find the values of the stars before you can apply normal Sudoku rules.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Two sudokus in one. Challenge yourself to make the necessary connections.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

A pair of Sudoku puzzles that together lead to a complete solution.

Given the products of adjacent cells, can you complete this Sudoku?