You need to find the values of the stars before you can apply normal Sudoku rules.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

A few extra challenges set by some young NRICH members.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Given the products of adjacent cells, can you complete this Sudoku?

This challenge extends the Plants investigation so now four or more children are involved.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Given the products of diagonally opposite cells - can you complete this Sudoku?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

A pair of Sudoku puzzles that together lead to a complete solution.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Four small numbers give the clue to the contents of the four surrounding cells.

Use the clues about the shaded areas to help solve this sudoku

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Use the differences to find the solution to this Sudoku.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?