Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

A pair of Sudoku puzzles that together lead to a complete solution.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

You need to find the values of the stars before you can apply normal Sudoku rules.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Given the products of diagonally opposite cells - can you complete this Sudoku?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

A few extra challenges set by some young NRICH members.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Four small numbers give the clue to the contents of the four surrounding cells.

This Sudoku, based on differences. Using the one clue number can you find the solution?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

A Sudoku with clues given as sums of entries.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Two sudokus in one. Challenge yourself to make the necessary connections.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?