A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"
Each clue in this Sudoku is the product of the two numbers in adjacent cells.
Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.
Given the products of adjacent cells, can you complete this Sudoku?
An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.
Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?
You need to find the values of the stars before you can apply normal Sudoku rules.
Find the values of the nine letters in the sum: FOOT + BALL = GAME
A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.
Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".
Make your own double-sided magic square. But can you complete both sides once you've made the pieces?
This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.
If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?
The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?
A few extra challenges set by some young NRICH members.
Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.
A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.
This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?
Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.
A challenging activity focusing on finding all possible ways of stacking rods.
Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.
Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.
Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?
There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.
The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?
Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?
First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.
Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?
A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?
You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?
Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?
Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.
This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.
The clues for this Sudoku are the product of the numbers in adjacent squares.
Four friends must cross a bridge. How can they all cross it in just 17 minutes?
This challenge extends the Plants investigation so now four or more children are involved.
The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?
An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.
Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.
How many solutions can you find to this sum? Each of the different letters stands for a different number.
How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?
Given the products of diagonally opposite cells - can you complete this Sudoku?
Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?
Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?
Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?
Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?
The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.
An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?
There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?
This Sudoku, based on differences. Using the one clue number can you find the solution?