Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The challenge is to find the values of the variables if you are to solve this Sudoku.

Use the clues about the shaded areas to help solve this sudoku

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

I added together some of my neighbours house numbers. Can you explain the patterns I noticed?

Solve the equations to identify the clue numbers in this Sudoku problem.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A Sudoku that uses transformations as supporting clues.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

This Sudoku requires you to do some working backwards before working forwards.

A pair of Sudoku puzzles that together lead to a complete solution.

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Four small numbers give the clue to the contents of the four surrounding cells.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Find out about Magic Squares in this article written for students. Why are they magic?!

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Two sudokus in one. Challenge yourself to make the necessary connections.

Two sudokus in one. Challenge yourself to make the necessary connections.

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

This task encourages you to investigate the number of edging pieces and panes in different sized windows.