Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

How many different symmetrical shapes can you make by shading triangles or squares?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Two sudokus in one. Challenge yourself to make the necessary connections.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Two sudokus in one. Challenge yourself to make the necessary connections.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Find out about Magic Squares in this article written for students. Why are they magic?!

A challenging activity focusing on finding all possible ways of stacking rods.

A Sudoku based on clues that give the differences between adjacent cells.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

A Sudoku that uses transformations as supporting clues.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

A Sudoku with clues given as sums of entries.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

This challenge extends the Plants investigation so now four or more children are involved.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Four small numbers give the clue to the contents of the four surrounding cells.