The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

This challenge extends the Plants investigation so now four or more children are involved.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Given the products of diagonally opposite cells - can you complete this Sudoku?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

A few extra challenges set by some young NRICH members.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

A Sudoku that uses transformations as supporting clues.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Two sudokus in one. Challenge yourself to make the necessary connections.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Two sudokus in one. Challenge yourself to make the necessary connections.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A Sudoku with clues given as sums of entries.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Find the values of the nine letters in the sum: FOOT + BALL = GAME