Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Two sudokus in one. Challenge yourself to make the necessary connections.

A Sudoku based on clues that give the differences between adjacent cells.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

A Sudoku that uses transformations as supporting clues.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Four small numbers give the clue to the contents of the four surrounding cells.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Two sudokus in one. Challenge yourself to make the necessary connections.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Given the products of diagonally opposite cells - can you complete this Sudoku?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This Sudoku, based on differences. Using the one clue number can you find the solution?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

A pair of Sudoku puzzles that together lead to a complete solution.

You need to find the values of the stars before you can apply normal Sudoku rules.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.