Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

The clues for this Sudoku are the product of the numbers in adjacent squares.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Given the products of adjacent cells, can you complete this Sudoku?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Find out about Magic Squares in this article written for students. Why are they magic?!

Given the products of diagonally opposite cells - can you complete this Sudoku?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

A pair of Sudoku puzzles that together lead to a complete solution.

You need to find the values of the stars before you can apply normal Sudoku rules.

Four small numbers give the clue to the contents of the four surrounding cells.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Two sudokus in one. Challenge yourself to make the necessary connections.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Use the clues about the shaded areas to help solve this sudoku

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Two sudokus in one. Challenge yourself to make the necessary connections.

How many different symmetrical shapes can you make by shading triangles or squares?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

In this article, the NRICH team describe the process of selecting solutions for publication on the site.