Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Given the products of adjacent cells, can you complete this Sudoku?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

The clues for this Sudoku are the product of the numbers in adjacent squares.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

A pair of Sudoku puzzles that together lead to a complete solution.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Given the products of diagonally opposite cells - can you complete this Sudoku?

A Sudoku that uses transformations as supporting clues.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Four small numbers give the clue to the contents of the four surrounding cells.

Two sudokus in one. Challenge yourself to make the necessary connections.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Use the clues about the shaded areas to help solve this sudoku

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Use the differences to find the solution to this Sudoku.

Find out about Magic Squares in this article written for students. Why are they magic?!

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

This Sudoku, based on differences. Using the one clue number can you find the solution?

Two sudokus in one. Challenge yourself to make the necessary connections.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A Sudoku based on clues that give the differences between adjacent cells.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.