Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Two sudokus in one. Challenge yourself to make the necessary connections.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

A Sudoku based on clues that give the differences between adjacent cells.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Find out about Magic Squares in this article written for students. Why are they magic?!

A Sudoku that uses transformations as supporting clues.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Two sudokus in one. Challenge yourself to make the necessary connections.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A Sudoku with clues given as sums of entries.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Four small numbers give the clue to the contents of the four surrounding cells.

A challenging activity focusing on finding all possible ways of stacking rods.

A pair of Sudoku puzzles that together lead to a complete solution.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?