A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Given the products of adjacent cells, can you complete this Sudoku?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

The clues for this Sudoku are the product of the numbers in adjacent squares.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

A challenging activity focusing on finding all possible ways of stacking rods.

You need to find the values of the stars before you can apply normal Sudoku rules.

Find out about Magic Squares in this article written for students. Why are they magic?!

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This challenge extends the Plants investigation so now four or more children are involved.

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?