15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

I added together some of my neighbours house numbers. Can you explain the patterns I noticed?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

A pair of Sudoku puzzles that together lead to a complete solution.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Use the clues about the shaded areas to help solve this sudoku

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

The clues for this Sudoku are the product of the numbers in adjacent squares.

This Sudoku, based on differences. Using the one clue number can you find the solution?

A Sudoku that uses transformations as supporting clues.

How many different symmetrical shapes can you make by shading triangles or squares?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Two sudokus in one. Challenge yourself to make the necessary connections.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

Two sudokus in one. Challenge yourself to make the necessary connections.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Four small numbers give the clue to the contents of the four surrounding cells.

A few extra challenges set by some young NRICH members.

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

This Sudoku requires you to do some working backwards before working forwards.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.