Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

A Sudoku based on clues that give the differences between adjacent cells.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Two sudokus in one. Challenge yourself to make the necessary connections.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Two sudokus in one. Challenge yourself to make the necessary connections.

A Sudoku that uses transformations as supporting clues.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Solve the equations to identify the clue numbers in this Sudoku problem.

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

Four small numbers give the clue to the contents of the four surrounding cells.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

The challenge is to find the values of the variables if you are to solve this Sudoku.

Given the products of diagonally opposite cells - can you complete this Sudoku?

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

A pair of Sudoku puzzles that together lead to a complete solution.

Use the clues about the shaded areas to help solve this sudoku

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

This Sudoku requires you to do some working backwards before working forwards.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Use the differences to find the solution to this Sudoku.

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.