Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

How many different symmetrical shapes can you make by shading triangles or squares?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

A few extra challenges set by some young NRICH members.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

You need to find the values of the stars before you can apply normal Sudoku rules.

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Two sudokus in one. Challenge yourself to make the necessary connections.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

A Sudoku that uses transformations as supporting clues.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Add or subtract the two numbers on the spinners and try to complete a row of three. Are there some numbers that are good to aim for?