My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A pair of Sudoku puzzles that together lead to a complete solution.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Four small numbers give the clue to the contents of the four surrounding cells.

A Sudoku that uses transformations as supporting clues.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

This Sudoku, based on differences. Using the one clue number can you find the solution?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Use the clues about the shaded areas to help solve this sudoku

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Two sudokus in one. Challenge yourself to make the necessary connections.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Two sudokus in one. Challenge yourself to make the necessary connections.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.