You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

A Sudoku based on clues that give the differences between adjacent cells.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

A Sudoku that uses transformations as supporting clues.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Two sudokus in one. Challenge yourself to make the necessary connections.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Two sudokus in one. Challenge yourself to make the necessary connections.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

How many different symmetrical shapes can you make by shading triangles or squares?

You need to find the values of the stars before you can apply normal Sudoku rules.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

This challenge extends the Plants investigation so now four or more children are involved.

Given the products of adjacent cells, can you complete this Sudoku?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

A challenging activity focusing on finding all possible ways of stacking rods.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Find out about Magic Squares in this article written for students. Why are they magic?!