You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

A pair of Sudoku puzzles that together lead to a complete solution.

The challenge is to find the values of the variables if you are to solve this Sudoku.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Four small numbers give the clue to the contents of the four surrounding cells.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Use the clues about the shaded areas to help solve this sudoku

This Sudoku, based on differences. Using the one clue number can you find the solution?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Solve the equations to identify the clue numbers in this Sudoku problem.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Two sudokus in one. Challenge yourself to make the necessary connections.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

This Sudoku requires you to do some working backwards before working forwards.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Use the differences to find the solution to this Sudoku.

A Sudoku that uses transformations as supporting clues.

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

You need to find the values of the stars before you can apply normal Sudoku rules.

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

A Sudoku based on clues that give the differences between adjacent cells.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?