Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Four small numbers give the clue to the contents of the four surrounding cells.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Two sudokus in one. Challenge yourself to make the necessary connections.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

A Sudoku based on clues that give the differences between adjacent cells.

A Sudoku that uses transformations as supporting clues.

A pair of Sudoku puzzles that together lead to a complete solution.

You need to find the values of the stars before you can apply normal Sudoku rules.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

This Sudoku, based on differences. Using the one clue number can you find the solution?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Two sudokus in one. Challenge yourself to make the necessary connections.

Solve the equations to identify the clue numbers in this Sudoku problem.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

Use the clues about the shaded areas to help solve this sudoku

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

This Sudoku requires you to do some working backwards before working forwards.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Many natural systems appear to be in equilibrium until suddenly a critical point is reached, setting up a mudslide or an avalanche or an earthquake. In this project, students will use a simple. . . .