A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

You need to find the values of the stars before you can apply normal Sudoku rules.

A few extra challenges set by some young NRICH members.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Add or subtract the two numbers on the spinners and try to complete a row of three. Are there some numbers that are good to aim for?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Two sudokus in one. Challenge yourself to make the necessary connections.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

A Sudoku that uses transformations as supporting clues.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

A Sudoku based on clues that give the differences between adjacent cells.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Two sudokus in one. Challenge yourself to make the necessary connections.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

How many different symmetrical shapes can you make by shading triangles or squares?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?