Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Given the products of adjacent cells, can you complete this Sudoku?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

The clues for this Sudoku are the product of the numbers in adjacent squares.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

A pair of Sudoku puzzles that together lead to a complete solution.

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

You need to find the values of the stars before you can apply normal Sudoku rules.

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Two sudokus in one. Challenge yourself to make the necessary connections.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Use the clues about the shaded areas to help solve this sudoku

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.