Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

The Zargoes use almost the same alphabet as English. What does this birthday message say?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!