Search by Topic

Resources tagged with Working systematically similar to Tessellating Triangles:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 339 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Working systematically

problem icon

Cereal Packets

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

problem icon

Nine-pin Triangles

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

How many different triangles can you make on a circular pegboard that has nine pegs?

problem icon

Tri.'s

Stage: 2 Challenge Level: Challenge Level:1

How many triangles can you make on the 3 by 3 pegboard?

problem icon

More Transformations on a Pegboard

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

problem icon

Sticks and Triangles

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

problem icon

Egyptian Rope

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

problem icon

Putting Two and Two Together

Stage: 2 Challenge Level: Challenge Level:1

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

problem icon

Tetrafit

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

problem icon

Ribbon Squares

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

problem icon

Cover the Tray

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

These practical challenges are all about making a 'tray' and covering it with paper.

problem icon

Seven Flipped

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

problem icon

Open Boxes

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

problem icon

Polydron

Stage: 2 Challenge Level: Challenge Level:1

This activity investigates how you might make squares and pentominoes from Polydron.

problem icon

Calcunos

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

problem icon

Rabbits in the Pen

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Using the statements, can you work out how many of each type of rabbit there are in these pens?

problem icon

Making Boxes

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

problem icon

Making Cuboids

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

problem icon

Whose Face?

Stage: 1 and 2 Challenge Level: Challenge Level:1

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

problem icon

Calendar Cubes

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

problem icon

Snails' Trails

Stage: 2 Challenge Level: Challenge Level:1

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

problem icon

Seven Pots of Plants

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

problem icon

Brush Loads

Stage: 2 Challenge Level: Challenge Level:1

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

problem icon

Ancient Runes

Stage: 2 Challenge Level: Challenge Level:1

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

problem icon

Peg and Pin Boards

Stage: 1 and 2

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

problem icon

The Problem-solving Classroom

Stage: 1 and 2 Challenge Level: Challenge Level:1

problem icon

Numerically Equal

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you draw a square in which the perimeter is numerically equal to the area?

problem icon

The Pet Graph

Stage: 2 Challenge Level: Challenge Level:1

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

problem icon

Display Boards

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Design an arrangement of display boards in the school hall which fits the requirements of different people.

problem icon

Symmetry Challenge

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

problem icon

A-magical Number Maze

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

problem icon

Code Breaker

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

problem icon

One to Fifteen

Stage: 2 Challenge Level: Challenge Level:1

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

problem icon

The Pied Piper of Hamelin

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

problem icon

Octa Space

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

problem icon

Square Corners

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

problem icon

Triangles All Around

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you find all the different triangles on these peg boards, and find their angles?

problem icon

Painting Possibilities

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

problem icon

Map Folding

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

problem icon

Four Colours

Stage: 1 and 2 Challenge Level: Challenge Level:2 Challenge Level:2

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

problem icon

Quadrilaterals

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

problem icon

Pouring the Punch Drink

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

problem icon

Room Doubling

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Investigate the different ways you could split up these rooms so that you have double the number.

problem icon

Ice Cream

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

problem icon

Pasta Timing

Stage: 2 Challenge Level: Challenge Level:1

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

problem icon

Fake Gold

Stage: 2 Challenge Level: Challenge Level:1

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

problem icon

Two on Five

Stage: 1 and 2 Challenge Level: Challenge Level:2 Challenge Level:2

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

problem icon

1 to 8

Stage: 2 Challenge Level: Challenge Level:1

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

problem icon

Making Squares

Stage: 2

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

problem icon

Fencing Lambs

Stage: 2 Challenge Level: Challenge Level:1

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

problem icon

Eight Queens

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.