These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Can you find all the ways to get 15 at the top of this triangle of numbers?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

How many trapeziums, of various sizes, are hidden in this picture?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

This task follows on from Build it Up and takes the ideas into three dimensions!

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Can you use this information to work out Charlie's house number?

Investigate the different ways you could split up these rooms so that you have double the number.

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

You have 5 darts and your target score is 44. How many different ways could you score 44?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?