These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

An investigation that gives you the opportunity to make and justify predictions.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

These practical challenges are all about making a 'tray' and covering it with paper.

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Design an arrangement of display boards in the school hall which fits the requirements of different people.

This activity investigates how you might make squares and pentominoes from Polydron.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

What happens when you round these three-digit numbers to the nearest 100?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.