Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

An investigation that gives you the opportunity to make and justify predictions.

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

How many models can you find which obey these rules?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

These practical challenges are all about making a 'tray' and covering it with paper.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Using the statements, can you work out how many of each type of rabbit there are in these pens?