A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

An activity making various patterns with 2 x 1 rectangular tiles.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you find all the different ways of lining up these Cuisenaire rods?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

What is the best way to shunt these carriages so that each train can continue its journey?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Try out the lottery that is played in a far-away land. What is the chance of winning?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

How many models can you find which obey these rules?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

These practical challenges are all about making a 'tray' and covering it with paper.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How many different triangles can you make on a circular pegboard that has nine pegs?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

You have 5 darts and your target score is 44. How many different ways could you score 44?