A challenging activity focusing on finding all possible ways of stacking rods.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

A few extra challenges set by some young NRICH members.

This challenge extends the Plants investigation so now four or more children are involved.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Replace the letters with numbers to make the addition work out correctly. R E A D + T H I S = P A G E

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

You need to find the values of the stars before you can apply normal Sudoku rules.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Use the clues about the symmetrical properties of these letters to place them on the grid.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you find all the different ways of lining up these Cuisenaire rods?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

In how many ways can you stack these rods, following the rules?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Given the products of adjacent cells, can you complete this Sudoku?