Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How many models can you find which obey these rules?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

How will you go about finding all the jigsaw pieces that have one peg and one hole?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

These practical challenges are all about making a 'tray' and covering it with paper.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

An activity making various patterns with 2 x 1 rectangular tiles.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you find all the different ways of lining up these Cuisenaire rods?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Try out the lottery that is played in a far-away land. What is the chance of winning?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.