If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

An investigation that gives you the opportunity to make and justify predictions.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

These practical challenges are all about making a 'tray' and covering it with paper.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

An activity making various patterns with 2 x 1 rectangular tiles.

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.