The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

There are lots of different methods to find out what the shapes are worth - how many can you find?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Can you use this information to work out Charlie's house number?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.