Try out the lottery that is played in a far-away land. What is the chance of winning?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you find all the different ways of lining up these Cuisenaire rods?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

In this matching game, you have to decide how long different events take.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This dice train has been made using specific rules. How many different trains can you make?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Investigate the different ways you could split up these rooms so that you have double the number.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?