You have 5 darts and your target score is 44. How many different ways could you score 44?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This task follows on from Build it Up and takes the ideas into three dimensions!

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Can you use this information to work out Charlie's house number?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

The Zargoes use almost the same alphabet as English. What does this birthday message say?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?