Given the products of adjacent cells, can you complete this Sudoku?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Given the products of diagonally opposite cells - can you complete this Sudoku?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Have a go at balancing this equation. Can you find different ways of doing it?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Can you work out some different ways to balance this equation?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

You need to find the values of the stars before you can apply normal Sudoku rules.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?