Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

These practical challenges are all about making a 'tray' and covering it with paper.

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

An activity making various patterns with 2 x 1 rectangular tiles.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Can you find all the different ways of lining up these Cuisenaire rods?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

How many models can you find which obey these rules?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Try out the lottery that is played in a far-away land. What is the chance of winning?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.